《纯干货-6》Stanford University 2017年最新《Tensorflow与深度学习实战》视频课程分享

  

    分享一套Stanford University 在2017年1月份推出的一门Tensorflow与深度学习实战的一门课程。该课程讲解了最新版本的Tensorflow中各种概念、操作和使用方法,并且给出了丰富的深度学习模型实战,涉及Word2vec、AutoEncoder、RNN(LSTM,GRU)、Seq2seq with Attention 、Chatbot: Training and Optimizing、以及最近很火的深度强化学习DRL。还邀请了很多学术界和工业界的大牛做讲座。

课程的Schedule and Syllabus地址:Tensorflow for Deep Learning Research

课程相关实战的github地址:chiphuyen/tf-stanford-tutorials

课程在线视频教程地址:youtube.com/watch?

课程完整视频教程下载地址:

链接: pan.baidu.com/s/1dFb4st

抱歉, 链接有问题,回复关键字“tv”即可得到所有资料

密码: 公众号回复“tv”

课程所有的ppt和笔记notes下载地址:

链接: pan.baidu.com/s/1slIzn6

密码: 公众号回复“tp”

附本套视频课程目录,可以参考一下:

LectureJan 13Overview of Tensorflow

Why Tensorflow?

Graphs and Sessions[note]

To doJan 13Check out TensorBoard

LectureJan 18 Operations

Basic operations, constants, variables

Control dependencies

Feeding inputs

TensorBoard

WorkshopJan 20Linear and Logistic Regression

Tensorflow's Optimizers

Example: OCR task on MNIST dataset[note]

A1 releasedJan 20Assignment #1 released[A1 handout]

LectureJan 25

Week 3Structure your TensorFlow model

Example: word2vecSuggested Readings:

A lot. See lecture note

LectureJan 27Managing experiments and process data

Interfaces

Saver object, checkpoints

Example: word2vec

LectureFeb 1

Week 4Convolutional Neural Networks

Guest lecture by Justin Johnson (Stanford Vision Lab)

Example: Neural style translation

LectureFeb 3Convolutional Neural Networks (continued)

Example: Autoencoder

A2 releasedFeb 8Assignment #2 released[A2 Handout]

LectureFeb 8

Week 5Convolutional Neural Networks

Guest lecture by Jon Shlens (Google Brain)

LectureFeb 10Input Pipeline

Discussion of Assignment #2

Style Transfer

Week 6No classTensorFlow Dev Summit

Sign up for campus viewing

LectureFeb 17Midterm discussionNo slides

LectureFeb 22

Week 7Introduction to RNN, LSTM, GRU

Example: Character-level Language Modeling

LectureFeb 24Convolutional-GRU

Guest lecture by Lukasz Kaiser (Google Brain)

LectureMar 1

Week 8Seq2seq with Attention

Example: Chatbot[slides]

A3 releasedMar 2Assignment #3 released[A3 Handout]

[Anonymous Chatlog Donation]

Mar 3No class

Pete Warden: TensorFlow for Mobile Developers

LectureMar 8

Week 9Seq2seq with Attention (continued)

Chatbot: Training and Optimizing

LectureMar 10Reinforcement Learning in Tensorflow

Guest lecture by Danijar Hafner

(co-author of TensorFlow for Machine Intelligence)[slides]

DemoMar 17Chatbot demo


更多深度学习NLP方面应用的经典论文、实践经验和最新消息,欢迎关注微信公众号“深度学习与NLPDeepLearning_NLP”或扫描二维码添加关注。


这是人工智能入门课,将用八次课帮你梳理人工智能概念、机器学习方法、深度学习框架。如果你还不知道什么是人工智能、机器学习深度学习,欢迎进来学习交流。结课时,你将会用Python搭建人工神经网络,实现特定物体的识别。一起编码感受人工智能 机器学习 深度学习吧! —— 课程团队 课程概述 课程会以投影的形式,帮你梳理tensorflow的用法,希望你用纸质笔记本记录下每个打着对勾的知识点;会用录屏的形式,带你编写代码,实现实际应用,希望你用电脑复现课程的案例。每次课后,助教会分享他的tensorflow笔记和源代码,帮你查漏补缺。 授课目标 学会使用Python语言搭建人工神经网络,实现图像分类。 课程大纲 第一讲 人工智能概述 1.1-概述 1.2-双系统安装 1.3-Windows虚拟机安装 1.4-Mac Tensorflow安装 1.5-Windows Anaconda TensorFlow安装 第二讲 Python语法串讲 2.1-Linux指令、Hello World 2.2-列表、元组、字典 2.3-条件语句 2.4-循环语句 2.5-turtle模块 2.6-函数、模块、包 2.7-类、对象、面向对象的编程 2.8-文件操作 第三讲 Tensorflow框架 3.1-张量、计算图、会话 3.2-前向传播 3.3-反向传播 第四讲 神经网络优化 4.1-损失函数 4.2-学习率 4.3-滑动平均 4.4-正则化 4.5-神经网络搭建八股 第五讲 全连接网络基础 5.1-MNIST数据集 5.2-模块化搭建神经网络八股 5.3-手写数字识别准确率输出 第六讲 全连接网络实践 6.1-输入手写数字图片输出识别结果 6.2-制作数据集 第七讲 卷积网络基础 7.1-卷积神经网络 7.2-lenet5代码讲解 第八讲 卷积网络实践 8.1-复现已有的卷积神经网络 8.2-用vgg16实现图片识别 第九讲 课程项目分享 9.1-真实复杂场景手写英文体识别 9.2-二值神经网络实现MNIST手写数字识别 9.3-车牌号码识别 9.4-人脸表情识别 9.5-实时目标检测、识别、计数和追踪 9.6-图片自动上色 9.7-图像风格融合与快速迁移 9.8-图像中文描述 9.9-跨模态检索 9.10-强化学习实现“不死鸟” FlappyBird
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页